Wis. Admin. Code Department of Natural Resources NR 504.06

Current through November 25, 2024
Section NR 504.06 - Minimum design and construction criteria for landfill liners and leachate collection systems
(1) GENERAL.
(a) All major phases of landfills initially accepting municipal solid waste after July 1, 1996, shall be designed with a composite liner and a leachate collection system capable of limiting the average leachate head level on the composite liner to one foot or less during operation and after closure of the landfill, except as provided in s. NR 504.10(1) (c). The composite liner shall consist of 2 components; the upper component shall consist of a nominal 60-mil or thicker geomembrane liner with no thickness measurements falling below the minimum industry accepted manufacturing tolerances, and the lower component shall consist of a minimum 4 foot thick layer of compacted clay meeting the specifications of s. NR 504.06(2) (a). The geomembrane component shall be installed in direct and uniform contact with the compacted clay soil component, and the landfill shall meet or exceed the standards in the applicable portions of subs. (2), (3) and (4). All other landfills shall be designed to contain and collect leachate to the maximum practical extent. This shall be accomplished by designing the landfill to meet the standards contained in the applicable portions of subs. (2), (3) and (4), unless the department approves the applicant's alternative design as per s. NR 504.10, which provides an equivalent or better level of performance than the standards contained in this chapter.
(b) If the applicant does not complete construction of the first major phase of the landfill within 2 years from the date of the plan of operation approval, the applicant shall reapply to the department for approval to construct the landfill. This application does not constitute a feasibility report as defined in s. 289.24, Stats. The department may require additional conditions of approval and require redesign of the landfill in accordance with state-of-the-art design criteria.
(2) COMPOSITE OR CLAY LINED LANDFILLS. All landfills designed with a composite liner or a clay liner shall meet the following requirements:
(a) All clay used in liner construction shall meet the following specifications:
1. A minimum of 50% by weight which passes the 200 sieve.
2. A saturated hydraulic conductivity of 1x10-7 cm/sec or less, when compacted to required moisture contents and densities based on the modified Proctor method, standard Proctor method, or a line of optimums method approved by the department.
3. An average liquid limit of 25 or greater with no values less than 20.
4. An average plasticity index of 12 or greater with no values less than 10.
(b) The separation distance between the seasonal high groundwater table and the bottom of the clay component of a composite liner or a clay liner shall be at least 10 feet except for zone-of-saturation landfills.
(c) The separation distance between the top of the bedrock surface and the bottom of the clay component of a composite liner or a clay liner shall be at least 10 feet.
(d) The slope of the liner surface toward the leachate collection lines shall be at least 2%.
(e) The minimum thickness of the clay component of a composite liner at all locations shall be at least 4 feet. The minimum thickness of a clay liner at all locations shall be at least 5 feet.
(f) The clay component of a composite liner or a clay liner shall be constructed in the following manner:
1. All clay layers in the liner shall be constructed in lift heights no greater than 6 inches after compaction using footed compaction equipment having feet at least as long as the loose lift height. As needed, clay shall be disked or otherwise mechanically processed prior to compaction to break up clods and allow for moisture content adjustment. Clod size shall be no greater than 4 inches. All compaction equipment utilized shall have a minimum static weight of 30,000 pounds. Lighter equipment may be used in small areas where it is not possible to use full size equipment. Alternative procedures or equipment may be proposed for approval by the department.
2. A sufficient number of passes of the compaction equipment shall be made over each lift of clay to ensure complete remolding of the clay.
3. All clay shall be compacted to 90% modified or 95% standard Proctor density at a moisture content at least 2% wet of optimum if using the modified Proctor method and wet of optimum if using the standard Proctor method, based on the characteristics of the appropriate Proctor curve for the clay being placed. As clay placement proceeds, the minimum density and moisture content targets shall be adjusted as necessary. The department recommends use of an alternate method of determining adequate density and moisture content based on a line of optimums method. However, this method may not be used unless it has been previously detailed in a landfill's plan of operation or a proposed plan modification and approved in writing by the department. At a minimum, any such proposal shall address how the line of optimums would be defined, as well as how the minimum dry unit weight needed to ensure adequate shear strength of the clay soils proposed would be determined.
(g) The slope of the interior sidewalls of a landfill may not exceed 3 horizontal to one vertical nor be less than 5 horizontal to one vertical.
(h) The clay component of a liner in adjacent phases shall be keyed together to form a continuous clay seal. This shall be accomplished by excavating steps along the edge of the existing lined phase and overlapping them with the lifts of clay being placed for the liner of the new phase. A minimum of 4 steps shall be included, with the total width of the spliced area measuring a minimum of 15 feet.
(3) COMPOSITE-LINED LANDFILLS. All landfills designed with a composite liner shall meet the following additional requirements for the geomembrane component of the liner:
(a) All geomembranes shall be fabricated from resins specifically formulated for waste containment purposes. Nominal geomembrane thickness shall be 60 mils or greater with no thickness measurements falling below the minimum industry accepted manufacturing tolerances.
(b) Additional protection shall be provided for the geomembrane component of the composite liner along areas subject to traffic or other concentrated activity during construction or operation. This shall include sumps, sideslope risers and entry ramps.
(c) For slopes in excess of 10%, geomembrane panels shall be installed such that all seams run perpendicular to the contour lines of the slope to the extent possible.
(d) Prior to geomembrane placement, the clay surface shall be rolled and graded so it is free of irregularities, protrusions, loose soil and abrupt changes in grade. The surface shall also be free of stones, grade stakes and construction debris which may be damaging to the geomembrane and shall contain no areas excessively softened by high water content. The clay surface shall be sufficiently dry and dense such that the construction equipment used to place the geomembrane panels do not rut the clay surface. All depressions and large cracks shall be filled in with tamped clay.
(e) Geomembrane panels made of polyethylene resins shall be welded by double-tracked, fusion welding machines for all linear seams. Corners, butt seams and long repairs shall be fusion welded where possible. Extrusion or fusion welding shall be used for all other repairs, detail work and patches. Department approval shall be obtained prior to use of any other welding method for either panel seaming, repairs or construction of details.
(f) The geomembrane component of a composite liner constructed in phases adjacent to each other shall be welded together to form a continuous membrane surface. The liner extending beyond the proposed edge of waste at a phase junction shall be protected from traffic and weather.
(g) Wrinkles in the geomembrane component which are higher than they are wide, shall be smoothed or cut out and repaired prior to covering with soil. Guidance to machine operators placing soil on the geomembrane component shall be provided by the use of an observer with an unobstructed view of the advancing lift of soil.
(h) The minimum thickness of soil which must be present over the geomembrane component before vehicular traffic may occur shall be one foot for vehicles with ground pressure less than 5 pounds per square inch and 2 feet for all other tracked vehicles and flotation tire equipped vehicles. Trucks and other wheeled hauling equipment shall be confined to corridors or locations with a soil thickness of 3 or more feet over the geomembrane component.
(i) In order to lessen desiccation effects, the base of the landfill and the lower 10 vertical feet of the sideslope shall be covered with a drainage blanket within 30 days after completing quality control and quality assurance testing of the installation. The remaining sideslope shall be covered with either drainage material or a geotextile to prevent damage to the geomembrane.
(j) To prevent movement and folding of wrinkles, placement of soil over the membrane shall be performed during cooler temperature periods to the extent possible using methods of placement which minimize wrinkling.
(k) Anchor trenches shall be designed and constructed around the perimeter of the landfill to secure the permanent edges of the geomembrane. The geomembrane shall be seamed completely to the ends of all panels to minimize the potential of tear propagation along the seam.
(4) ZONE-OF-SATURATION LANDFILLS. All landfills proposed with base grades beneath the groundwater table shall meet the following requirements:
(a) The landfill shall be located in a fine-grained soil environment.

Note: Fine-grained soil environment is defined in s. NR 500.03(86).

(b) The landfill shall meet the requirements in sub. (2) (a), (d), (e), (f), (g) and (h), and if the landfill will accept municipal solid waste, sub. (3).
(c) An analysis shall be performed of the effect which groundwater flow may have on uplift of the liner and the short and long-term stability of the geomembrane component of the composite liner. The analysis shall evaluate the effect of an underdrain or other dewatering system.
(d) Borings, backhoe pits or other means of exposing subsoils shall be performed on a 100-foot grid to a minimum depth of 5 feet below the gradient control layer, if part of the design, or a minimum depth of 5 feet below the subbase grades of the liner. All detected granular or silty soils within this 5 foot depth shall be removed and replaced with compacted, fine-grained soils.
(5) LEACHATE COLLECTION SYSTEMS. All leachate collection systems shall incorporate the following design features:
(a) A leachate collection system shall be included in each horizontal phase of the landfill. This system shall be designed to route leachate to the perimeter of the landfill in the most direct manner possible and limit the average leachate head level on the liner to one foot or less. The piping layout shall be such that leachate flows no more than 130 feet across the base of the liner before encountering a perforated leachate collection pipe. The department will consider greater flow distances for well designed composite landfills.
(b) The minimum slope on all leachate collection pipes at the base of the landfill shall be a constant 0.5%. The department recommends that greater pipe slopes be utilized whenever possible.
(c) The minimum diameter of all leachate collection or transfer pipes shall be 6 inches. Schedule 80 PVC pipe or an approved substitute shall be used.
(cm) Pipe fittings selected for use with PVC and HDPE pipe shall be secured to the leachate collection pipe. PVC fittings and pipe shall be solvent-welded. HDPE fittings and pipe shall be fusion welded.
(d) Leachate collection trenches for clay liners shall be designed as rectangular trenches. Leachate collection trenches for composite liners shall be designed as vee-trenches, with a minimum depth of 18 inches and with sideslopes no steeper than 3 horizontal to one vertical. The clay component of vee-trenches shall be smooth-drum rolled such that the clay in the trenches is smooth prior to placement of the membrane.
(dm) A geotextile shall be used to line the base and sidewalls of all leachate collection trenches and shall be placed directly over the geomembrane component of a composite liner or the clay component of a clay liner. The geotextile shall have a minimum weight of 12 oz/yd2, and may not be overlapped over the top of the trench. The geotextile specifications, including manufacturer's data for grab and puncture strength, shall be used to demonstrate that the geotextile can resist damage due to impact and puncture when aggregate is placed over the geotextile.
(e) The bedding material utilized in backfilling the leachate collection pipe trenches shall have a uniformity coefficient of less than 4, a maximum particle diameter of 11/2 inches, a maximum of 5% of the material which passes the number 4 sieve and consist of rounded to subangular gravel. A minimum depth of 4 inches of gravel shall be placed in the trenches prior to installation of the leachate pipes. The backfill shall also be placed such that a minimum of 6 inches of material exists above the top of the pipe and within the trenches. An additional 12 inches of material shall be mounded above the trench. In cases where the particle size of the drainage blanket is significantly less than the collection trench bedding, a properly designed graded soil filter or geotextile shall be utilized to minimize the migration of the drainage blanket material into the collection trenches. Limestone and dolomite may not be used in the leachate collection system unless no other suitable material is reasonably available.
(f) The sizing of sand, gravel, geotextiles and pipe openings shall be analyzed for control of piping of soil materials. The gradation of sand and gravel, the apparent opening size of geotextiles, and the pipe opening sizes shall be selected to achieve a stable and self-filtering structure under all conditions of leachate flow.
(g) All leachate collection lines shall have cleanout access points installed on both ends of each line and may not exceed 1,200 feet from the end of one cleanout to the toe of the opposite slope.
(h) Leachate lines, manholes and other engineering structures may not penetrate the liner in the vertical direction. For clay lined landfills, leachate transfer lines may penetrate the liner in the horizontal direction only. The number of liner penetrations shall be kept to a minimum. Composite lined landfills shall be designed without any perforations in the liner and in accordance with par. (j).
(i) Any leachate line that penetrates a clay liner shall have a 4 foot by 4 foot anti-seep collar placed around it. A minimum of 5 feet of compacted clay, as measured from the pipe, shall be placed around the collar in all directions.
(j) All composite lined landfills shall be designed and constructed with sumps and sideslope risers as part of their leachate removal system rather than utilizing systems which penetrate the composite liner sidewall. The leachate removal system shall meet the following requirements:
1. The volume of the sump and the capacity of the pump shall be sized so that accumulation of leachate outside the sump does not occur based on an assumed annual leachate collection rate of 6 inches. The volume of the sump shall take into account the potential buildup of solids over time.
2. The base of the leachate collection sumps shall be protected by the use of a thick polyethylene plate or other means acceptable to the department which is placed prior to the installation of the sideslope riser and backfill.
3. The leachate discharge pipes between the sideslope risers and collection tank shall be equipped with valves to prevent backflow into the waste disposal area.
4. The minimum diameter of the sideslope riser shall be 18 inches. The geometry of the sideslope riser at the junction of the sump and sidewall shall be selected to assure passage of the pump and associated hardware and to assure correct positioning of the intake of the pump.
5. The area of the sump and depth of gravel fill shall be sized to allow remedial installation of access and hardware for removal of leachate in the event of failure of the sideslope riser and pump system. The base of the sump shall be protected by polyethylene plate.
(k) All leachate lines transporting leachate out of the landfill by gravity shall be constructed with valves so the flow of leachate can be controlled. The valves shall be compatible with the leachate and be capable of being operated from the ground surface.
(l) All leachate transfer lines located outside of the composite lined or clay lined area shall be designed to assure groundwater protection through the use of double-cased pipe or by using another approved secondary containment method. All leachate transfer line piping shall be pressure tested prior to use. Unless otherwise approved by the department, the upslope end of the secondary pipe shall be sealed and the downslope end shall be open to allow any collected liquid to flow into the manhole.
(m) All leachate transfer lines, manholes, lift stations and other structures which transfer or store leachate outside the limits of waste shall be designed as shallow as practical and located far enough from the limits of filling so that excavations associated with repair of these devices would not infringe on the landfill cover system or sidewall liner. Each of these devices shall be constructed above the seasonal high groundwater table unless it is not technically feasible to do so and the design meets the requirements of par. (L).
(n) Leachate collection tanks and manholes shall be designed with a secondary containment system to prevent the discharge of leachate to ground and surface waters in the event of a leak or spill. Means shall be provided to monitor the tank and manholes within the secondary containment system unless other means for leak detection are approved by the department.
(o) All leachate collection tanks shall be designed to contain the volume of leachate which is generated by the landfill over a 4 day period and to withstand the soil and liquid loads that will be encountered during installation and use. The installation of the tanks shall follow the recommendations of the consultant and manufacturer.
(p) Measures shall be proposed to prevent accidental discharges at the leachate loadout station from entering groundwater or surface water. Unless an alternate method is approved by the department, the leachate loading station shall be paved with a concrete or asphalt pad and sloped to a catch basin to direct all spills back into the leachate holding tank.
(q) All manholes and enclosed structures for leachate and gas control systems shall be designed to allow for proper venting and access control. For landfills designed with active gas recovery systems, these devices shall be designed to minimize air intrusion into the landfill.
(r) All control systems such as pumps, valves and meters shall be designed to be operated from the ground surface.
(s) All leachate and groundwater collection systems shall be designed to accurately monitor the volume of liquid removed by the system.
(t) A minimum one foot thick granular drainage blanket shall be placed on top of the geomembrane component of a composite liner and on top of the clay component of a clay liner. For composite lined landfills, if the drainage blanket contains gravel greater than 1/4 inch, then a nonwoven geotextile shall be installed below the drainage blanket. The geotextile shall have a minimum weight of 12 oz/yd2 and shall be certified to be needle-free. The granular drainage blanket shall contain no more than 5% material by weight which passes the number 200 sieve.
(tm) Leachate collection blankets shall have a minimum hydraulic conductivity of 1 cm/sec for any site that accepts any amount of municipal solid waste and 1x10-2 cm/sec for landfills which do not accept municipal solid waste. The gradation of the granular drainage blanket and associated hydraulic conductivity shall be selected to maintain the maximum head in the drain within the drain thickness.
(u) All major horizontal clay lined phases above the saturated zone shall be designed with a collection basin lysimeter to monitor the unsaturated zone except for composite lined landfills.
(6) ADDITIONAL REQUIREMENTS FOR LANDFILLS WITH EXTENDED COLLECTION LINES.
(a) Landfills shall meet the requirements of pars.
(b) to (f) where they will accept municipal solid waste and contain leachate collection lines that exceed 1,200 feet from the end of each cleanout to the toe of the opposite slope. Where the requirements of this subsection differ from other requirements of this chapter, these requirements shall take precedence.
(b) The maximum length of leachate collection lines from the access point at one end to the toe of the opposite slope may not exceed 2,000 feet.
(c) The minimum slope on all leachate collection pipes and associated pipe trenches at the base of the landfill shall be designed and constructed to be 0.5% after accounting for primary and secondary settlement of the subgrade. The minimum design slope shall be selected following computation of 100% of the primary consolidation settlement and the secondary consolidation settlement of the compressible materials beneath the facility, which includes, as applicable, in-situ soil, added geologic material, structural fill material, and compacted clay liner. Secondary settlement shall be calculated using a 100-year time frame.
(d) Pipe bedding material shall be composed of coarse, uniform gravel with a hydraulic conductivity that is greater than or equal to the hydraulic conductivity of the leachate collection blanket specified in s. NR 504.06(5) (tm), in addition to meeting the other requirements of s. NR 504.06(5) (e).
(e) The maximum anticipated construction, operation and post-closure overburden loads over the leachate collection piping shall be calculated and utilized in selecting the pipe material and wall thickness, based on 6-inch pipe diameter and an appropriate in-field consolidated density.
(f) All components of the leachate collection system shall incorporate all of the following design features:
1. Sweep bends at all changes of alignment, using a minimum radius of 10 pipe diameters, consisting of prefabricated PVC sweep bends or smooth pipe bends or prefabricated sweep bends for HDPE or other pipe materials.
2. Pipe alignments that minimize horizontal and vertical alignment changes for the entire leachate collection pipe length.
3. Elimination or minimization of obstructions or artifacts of construction which impose drag on pipe cleaning jetter hose or nozzles.
(7) COMPOSITE-LINED LANDFILLS USING GCLS. Use of GCLs in construction of a composite liner may not be used except in landfills which do not accept municipal solid waste, unless the GCL is used as a pad for the upper surface of the 4 foot clay component of a composite liner for a municipal solid waste landfill. The GCL and soil barrier layer components of a barrier system shall meet all of the following requirements:
(a) The hydraulic performance of the GCL shall be assessed by the use of compatibility testing. The testing protocol shall be provided to the department for review and concurrence prior to the initiation of compatibility testing. The compatibility testing shall utilize percolation fluids that simulate the leachate that will be produced by the landfill.
(b) The GCL shall meet the specifications of s. NR 504.07(4) (a) 1. to 11.
(c) The GCL shall be underlain by a soil barrier layer that is a minimum of 2 feet thick and that meets the specifications of s. NR 504.07(4) (a) 12. to 17.

Wis. Admin. Code Department of Natural Resources NR 504.06

Cr. Register, January, 1988, No. 385, eff. 2-6-88; r. and recr., Register, June, 1996, No. 486, eff. 7-1-96; am. (5) (e) and (t), Register, August, 1997, No. 500; CR 04-077: cr. (5) (cm), (dm), (j) 4., 5., (tm) and (6), am. (5) (d), (e), and (t) Register November 2005 No. 599, eff. 12-1-05; CR 05-020: cr. (7) Register January 2006 No. 601, eff. 2-1-06; correction made under s. 13.93(2m) (b) 1, Stats., Register January 2006 No. 601; CR 06-026: am. (5) (dm) and (e), Register December 2006 No. 612, eff. 1-1-07.